My container is running stable since a year,

is that good?

⊠ devsecops19@pagel.pro

About Me

- DevSecOps Consultant, Hamburg
- Lecturer for Security in Web Applications at University of Applied Sciences Kiel/Wedel
- Open Source / Open Knowledge Enthusiast
 - DevSecOps Maturity Model
 - Full University Module Security in Web App.
 - OWASP Software Assurance Maturity Model

INS

- Introduction
- Attack Surface Reduction
- Scanning for Known Vulnerabilities
- Fast Patching
- Conclusion

- Introduction
- Attack Surface Reduction
- Scanning for Known Vulnerabilities
- Fast Patching
- Conclusion

Patch Management in 2009

My server is running stable since a year

\$ uptime 12:52:27 up 463 days, [...]

My container is running stable since a year

My container is running stable since a year

Conclusions? → Container has not been rebuild since a year

My container is running stable since a year

Conclusions?

→ Container has not been rebuild since a year

 \rightarrow No patches

 \rightarrow Host has not been restarted since a year

 \rightarrow No patches (at least for docker), no kernel updates

Vulnerabilities

Container Breakout

Container Breakout and more

Container Breakout and Patches

Strategies

- Attack surface reduction
- Scan for vulnerablities
- Fast patching

- Introduction
- Attack Surface Reduction
- Scanning for Known Vulnerabilities
- Fast Patching
- Conclusion

Attack Surface Reduction

Careful selection of distribution

Distribution Selection

research done with Hendrik Halkow

- Vulnerabilities
- Speed of providing patches
- Size
- Maintainability
- Stability

Image Vulnerable by Distribution

Container Patchmanagement

Image Vulnerable by Distribution

Container Patchmanagement

OS Selection

- Image size:
 - Alpine: 2.6 MB
 - CentOS: 71.9 MB
 - Debian: 18.3 MB
 - Red Hat Enterprise Linux: 30.8 MB
 - Ubuntu: 31.0 MB

OS Selection

- Image size:
 - Alpine: 2.6 MB
 - CentOS: 71.9 MB
 - Debian: 18.3 MB
 - Red Hat Enterprise Linux: 30.8 MB
 - Ubuntu: 31.0 MB

Does a small image size implies less vulnerabilities?

- Custom *glibc* and *bash* in Alpine
 - → Usage of additional *pkg-glibc* in Alpine
 - \rightarrow Not compatible with most Java versions

glibc provides API to the kernel, e.g. *open*, *read*, *write*, *malloc*, ...

A manually added Java compatible glibc needs to be added

Distroless

Copy only needed files to production images

 \rightarrow No shell in container

Distroless

- Advantages:
 - Less vulnerable files
- Disadvantages:
 - Requires knowledge
 - For development purpose: original distribution

Hint:

- Scan the original image
 - \rightarrow Results in a lot of false positves

- Introduction
- Attack Surface Reduction
- Scanning for Known Vulnerabilities
- Fast Patching
- Conclusion

Scanning for Known Vulnerabilties

- What?
- How?
- When?
- Who?

Detection of Components with Known Vulnerabilties

- What?
 - Application
 - Virtualized Operating System (e.g. Container)
 - Operating System
- How?
- When?
- Who?

Scanning for Known Vulnerabilties

• What? -low? • When? • Who?

Scan for Vulnerable Application Dependencies

- Commercial Tools
 - Blackduck, Artifactory, FOSSA, Whitesource, ...
- Open Source Tools
 - OWASP Dependency Check, NPM, ...

Scan for Vulnerable Image/Container Dep.

- Commercial Tools
 - Anchore, Artifactory, Blackduck, hub.docker.com, Tenable.io® Container Security, ...
- Open Source Tools
 - Anchore, CoreOS Clair, OpenSCAP, ...

Approaches

- Identification of dependencies incl. version
 - Package managers (App/OS)
 - Fingerprinting (Hash-Sums) of artifacts
 - Pattern recognision
- Vulnerability sources
 - National Vulnerability Database
 - Feeds (e.g. bug tracker)

Approach on Example of Clair

Approach on Example of Clair

Quality Gates: Thresholds

- Only n vulnerabilities
- Only *n* vulnerabilities with criticality *High*

Dev and ops do not decremt thresholds!

Quality Gates in Regulated Organisations

- Vulnerabilites with ciriticality greater than medium:
 MUST be handeld
- Vulnerabilities with ciriticality low and medium: SHOULD be handeled
 - \rightarrow Not part of automatic quality gate

Scan System

Continuous Integration: Image Scanning

Continuous Integration: Image Scanning

Continuous Integration: Image Scanning

Scan System

Praxis Tipp

- Original images (e.g. nginx) often copy compiled version
 - → No package manager
 - → No dependencies (Open Source)
 - → No Vulnerabilities

Praxis Tipp

- Original images (e.g. nginx) often copy compiled version
 - → No package manager
 - → No dependencies (Open Source)
 - → No Vulnerabilities
 - → Meta package (same version)

Scanning for Known Vulnerabilties

• What? • How? When? • Who?

Simplified Vulnerability Lifecycle

Simplified Vulnerability Lifecycle

Simplified Vulnerability Lifecycle

Scanning for Known Vulnerabilties

• What? • How? When? • Who?

Image Inheritance Tree

Simplified RACI Matrix

Role	Responsible	Accountable	Consulted	Informed
DevOps- Manager		Х		
DevOps-Team	Х			
CTO (No Patch)			Х	
Customers / Projects				Х

Patch-Responsiblities

Patch-Responsiblities

Patch-Responsiblities

Responding to a Vulnerability

- Transfer
- Avoid
- Mitigate, or
- Accept the risk

Responding to a Vulnerability

- Transfer
- Avoid
- Mitigate, or

Whom of you accept all risks?

Accept the risk (e.g. temporarily)

Scenario: Critical Vulnerability in *glibc*

What will you do?

- Fix it by yourself (do you have C/C++ developers?)
- Decommission system
- Transfer risk
- Accept (wait for patch in distribution)

Example Denial of Service

CVE-2017-8804

Name	CVE-2017-8804	
Description	The xdr_bytes and xdr_string functions in the GNU C Library (aka glibc or libc6) 2.25 mishandle failures of buffer deserialization, which allows remote attackers to cause a denial of service (virtual memory allocation, or memory consumption if	
	an overcommit setting is not used) via a crafted UDP packet to port 111, a related issue to CVE-2017-8779.	
Source	CVE (at NVD; CERT, LWN, oss-sec, fulldisc, bugtraq, EDB, Metasploit, Red Hat, Ubuntu, Gentoo, SuSE, Mageia, GitHub code/issues, web search, more)	
NVD severity	high (attack range: remote)	
Debian Bugs	862086	

Example CVE-2015-0235 CVE-2015-0235

Name	CVE-2015-0235
Description	Heap-based buffer overflow in thenss_hostname_digits_dots function in glibc 2.2, and other 2.x versions before 2.18, allows context-dependent attackers to execute arbitrary code via vectors related to the (1) gethostbyname or (2) gethostbyname2 function, aka "GHOST."
Source	CVE (at NVD; CERT, LWN, oss-sec, fulldisc, bugtraq, EDB, Metasploit, Red Hat, Ubuntu, Gentoo, SUSE bugzilla/CVE, Mageia, GitHub code/issues, web search, more)
References	DLA-139-1, DSA-3142-1
NVD severity	high (attack range: remote)
Debian Bugs	776391

- Introduction
- Strategies to Handle Patchmanagement
- Scanning for Known Vulnerabilities
- Fast Patching
- Conclusion

Periodical Patch Management with Containers

Nightly/Weekly:

- Pull external images
- Perform upgrade/update
- Build project images
- Test images (e.g. A/B-Testing)
- Destroy and start containers

- Image caching during build (no change \rightarrow old version)
- CentOS: yum update --security

Fail Secure?

\leftarrow \rightarrow C \triangleq https://l	pugs.centos.org/view.php?id=3578	G	☆			T	:
E CentOS Bug Tracker							
오 Activities							
 kbsingh@karan.org 2009-04-26 14:36 administrator ~0009256 	we dont support yum security in any of t	he cer	ntos re	epos at	the	momer	ıt

Image Updates

- Introduction
- Attack Surface Reduction
- Scanning for Known Vulnerabilities
- Fast Patching
- Conclusion

Pro/Con

Nightly build+deploy

- Good for external images
- High testing requirement
- Continuous Delivery required

Scanning

- Not blind
- High effort in analysing vulnerabilities

 \rightarrow Time consuming

Conclusion

- Patching is not easy
- Detection of vulnerabilities in running containers
- Quality gates are important and a centralized vulnerability mangement (system)

Questions?

⊠ devsecops19@pagel.pro

Trainings	When	Where
Docker Security Workshop	30.08.2019	Hamburg
DevSecOps Workshop	09.09.2019	Hamburg
Sicherheit in Webanwendungen	16.09.2019	Hamburg

Container Patchmanagement

Backup

